Tetrahedron 66 (2010) 5762-5767

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A first methodical approach to salts with unsymmetrical fluorophenyl (pentafluorophenyl)difluoroiodonium(V) cations $[R_f(R_F)IF_2]^+$ ($R_f=x-FC_6H_4$, x=2, 3, 4; $R_F=C_6F_5$)

Hermann-Josef Frohn^{a,*}, André Wenda^a, Ulrich Flörke^b

^a Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany ^b Inorganic and Analytical Chemistry, University of Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany

ARTICLE INFO

Article history: Received 19 March 2010 Accepted 12 April 2010 Available online 5 May 2010

Keywords: Iodonium(V) salts Aryliodine(V) tetrafluorides Arylboron difluorides Fluoro-oxidizers

1. Introduction

The chemistry of organoderivatives of iodine(V) is far less developed than that of iodine(III). While di(aryl)iodonium salts¹ represent the largest number of polyvalent organoiodine(III) compounds, only few examples of the corresponding di(aryl) iodonium(V) salts are known. This is astonishing because Masson² published a fundamental access to this type of compounds already in 1935. He obtained [(C_6H_5)₂IO]OH by 'self-condensation' of $C_6H_5IO_2$ in the presence of NaOH_{ad} (Eq. 1).

$$2C_{6}H_{5}IO_{2} + OH^{-} \rightarrow [(C_{6}H_{5})_{2}IO]OH + [IO_{3}]^{-}$$
(1)

Beringer³ used this reaction in 1968 to obtain the first examples of $[(Ar)_2IO]X$ salts by metathesis (Eq. 2).

$$[(Ar)_{2}IO]OH \xrightarrow{HOAc_{F}} [(Ar)_{2}IO]OAc_{F} \xrightarrow{M^{I}X} [(Ar)_{2}IO]X$$
(2)

Ar=C₆H₅, 4-FC₆H₄, 4-MeC₆H₄; M^I=Na, K; X=F, Cl, Br.

Based on this results, in 1972 Yagupol'skii⁴ published the syntheses of the first di(aryl)difluoroiodonium(V) salts (Eq. 3).

$$[(Ar)_{2}IO]OAc_{F} \xrightarrow{SF_{4}} [(Ar)_{2}IF_{2}]OAc_{F} \xrightarrow{SF_{4}} [(Ar)_{2}IF_{2}]F$$
(3)
Ar=C₆H₅, 4-FC₆H₄.

ABSTRACT

A promising approach to the unknown type of $[Ar'(Ar)IF_2]X$ salts is offered. x-FC₆H₄IF₄ (x=2, 3, 4) reacts with C₆F₅BF₂ in CH₂Cl₂ and forms [x-FC₆H₄(C₆F₅)IF₂][BF₄] salts in good yields. For [4-FC₆H₄(C₆F₅)IF₂][BF₄] the fluoro-oxidizer property is shown in reactions with weakly reducing agents like E(C₆F₅)3 (E=P, As, Sb, Bi) and ArI (Ar=4-FC₆H₄, C₆F₅). The fluorine/aryl substitution method is also applied to the synthesis of [(4-FC₆H₄)₂IF₂][BF₄], an example with two identical aryl groups in the difluoroiodonium(V) moiety. © 2010 Elsevier Ltd. All rights reserved.

The nature of $[(C_6H_5)_2IF_2]F$ was elucidated first in 2004 by Hoyer.⁵ She was able to get the single crystal structure and could prove that no $(C_6H_5)_2IF_3$ was present. Three $[(C_6H_5)_2IF_2]^+$ cations are bridged by fluoride ions in distances of 2.5–2.6 Å. Each $[(C_6H_5)_2IF_2]^+$ cation has in agreement with the VSEPR notation (AB_2C_2E) a ψ -trigonal bipyramidal geometry.

Tetrahedror

Up to now all approaches to salts with cations of the general type $[(Ar)_2IY_2]X$ were principally based on the 'self-condensation' step by Masson and allowed only symmetrical di(aryl) constitutions. In addition it is worth to mention that Masson's method cannot be applied when a larger number of electron-withdrawing substituents like F or NO₂ are present in the aryl group. In such cases the aryl group is eliminated under basic conditions (formation of Ar–H).⁶ In 2008 we have published a new methodical approach. We obtained the symmetrical example, $[(C_6F_5)_2IF_2][BF_4]$, by F/C_6F_5 substitution in $C_6F_5IF_4$ with $C_6F_5BF_2$.⁷ In the present paper we show the potential of this approach for the synthesis of unsymmetrical $[R_f(R_F)IF_2][BF_4]$ salts. Furthermore we want to show that $[Ar(Ar')IF_2]^+$ cations are good fluoro-oxidizers. This property may be useful in future to introduce fluorine into an organic moiety.

2. Experimental results

x-FC₆H₄IF₄ (x=2, 3, 4) reacted with C₆F₅BF₂ in weakly coordinating solvents like CH₂Cl₂ under F/C₆F₅ substitution and the products [x-FC₆H₄(C₆F₅)IF₂][BF₄] precipitated and could be easily isolated in good yields (Eq. 4).

^{*} Corresponding author. E-mail address: h-j.frohn@uni-due.de (H.-J. Frohn).

^{0040-4020/\$ —} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.04.047

$$x - FC_{6}H_{4}IF_{4} + C_{6}F_{5}BF_{2} \frac{CH_{2}CI_{2}}{\leq 20 \ \circ C/\leq 3 \ h} [x - FC_{6}H_{4}(C_{6}F_{5})IF_{2}][BF_{4}] \downarrow$$
(4)

It is important to mention that few percent of $[x-FC_6H_4(C_6F_5)I]$ [BF₄] were often included in the product. The different channels, which explain the reduction of $[x-FC_6H_4(C_6F_5)IF_2][BF_4]$ are discussed in Ref. 7.

The pair of starting materials with opposite functionalities can also be used, as was demonstrated for $[4-FC_6H_4(C_6F_5)IF_2][BF_4](Eq. 5)$.

$$C_{6}F_{5}IF_{4} + 4 - FX_{6}H_{4}BF_{2} \xrightarrow[\leq 20 \ \circ C/\geq 4]{} CI_{2} \xrightarrow[\leq 20 \ \circ C/\geq 4]{} (4 - FC_{6}H_{4}(C_{6}F_{5})IF_{2}][BF_{4}] \downarrow$$
(5)

But the reaction proceeded significantly slower and was accompanied by a large amount of reduced product $[4-FC_6H_4(C_6F_5)I]$ [BF4] (molar ratio $[4-FC_6H_4(C_6F_5)IF_2][BF_4]/[4-FC_6H_4(C_6F_5)I][BF_4]/C_6F_5I=52:46:3).$

In order to evaluate the influence of a low number of fluorine substituents in the aryl group of $ArIF_4$ and $ArBF_2$ on the reaction rate, we have additionally studied the reaction of $4-C_6H_4IF_4$ and $4-FC_6H_4BF_2$ (Eq. 6).

$$4 - C_{6}H_{4}IF_{4} + 4 - FC_{6}H_{4}BF_{2} \frac{CH_{2}Cl_{2}}{20 \ ^{\circ}C/<3 \ h} [(4 - FC_{6}H_{4})_{2}IF_{2}][BF_{4}] \downarrow$$
(6)

All three $[x-FC_6H_4(C_6F_5)IF_2][BF_4]$ salts are colorless solids and decompose exothermically without proceeding melting. The hypervalent IF₂ triad in combination with the high partial positive charge on iodine make these salts attractive as fluoro-oxidizers. We tested this property in reactions of $[4-FC_6H_4(C_6F_5)IF_2][BF_4]$ with weakly reducing $E(C_6F_5)_3$ compounds (E=P, As, Sb) (Eq. 7). In case of E=Bi, side-reactions became dominant (see Discussion).

$$4 - FC_{6}H_{4}(C_{6}F_{5})IF_{2}][BF_{4}] + E(C_{6}F_{5})_{3} \xrightarrow{MeCN}{20 \circ C}$$

$$[4 - FC_{6}H_{4}(C_{6}H_{5})I][BF_{4}] + (C_{6}H_{5})_{3}EF_{2}$$
(7)

E=P, As, Sb.

The aryl iodides C_6F_5I and 4-F C_6H_4I were chosen to demonstrate the electronic influence of aryl groups with strongly differing electron-withdrawing character on the reaction rate with [4-F $C_6H_4(C_6F_5)IF_2][BF_4]$ (Eq. 8).

$$[4 - FC_{6}H_{4}(C_{6}F_{5})IF_{2}][BF_{4}] + ArI \frac{MeCN}{20 \circ C}$$

$$[4 - FC_{6}H_{4}(C_{6}H_{5})I][BF_{4}] + ArIF_{2}$$
(8)
$$Ar = C_{6}F_{5}I, 4 - FC_{6}H_{4}I.$$

3. Discussion

The interaction of hypervalent element—fluoride moieties with fluoroorganyldifluoroboranes is a widely applicable method for F/R substitution. It was well elaborated for aryl-, alkenyl-, and alky-nylxenonium⁸ and diorganyliodonium(III) salts.^{9,10} The hypervalent bond in Ar'IF₄ compounds is characterized by significant partial negative charges on fluorine (>–0.5) and strong partial positive charges on iodine(V) (<3.0).¹¹ As a consequence of interaction of the Lewis acidic aryldifluoroborane with aryliodine tetrafluoride the borane takes over partially borate character and the nucleophilic property of its aryl group increases. Parallel the iodine center becomes more electrophilic. The transition state allows the transfer of the aryl group to iodine(V) and of fluorine to boron and ends with two kinetically independent species: Ar'(Ar)IF₃ and BF₃, which

form the iodonium(V) tetrafluoroborate, stabilized by lattice energy (Scheme 1).

$$\begin{array}{ccc} \text{Ar'}\text{IF}_4 & \xrightarrow{\text{ArBF}_2} & \text{Ar'}\text{IF}_3\text{-}\text{F--BF}_2\text{Ar} & \longrightarrow & <\text{Ar'}(\text{Ar})\text{IF}_3 + \text{BF}_3\text{-} & \longrightarrow & [\text{Ar'}(\text{Ar})\text{IF}_2][\text{BF}_4] \\ & \text{A} & \text{B} & \text{C} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

 $C_6F_5BF_2$ is a stronger Lewis acid than 4-F $C_6H_4BF_2$ and BF_3 , based on the result of gas phase fluoride affinity calculations.¹² Thus the polarization of an I–F bond of the IF₄ group (A in Scheme 1) proceeded better with $C_6F_5BF_2$ (Eq. 4) than with 4-F $C_6H_4BF_2$ (Eq. 5). Furthermore the I–F bond in 4-F $C_6H_4IF_4$ (Eq. 4) can be more easily polarized than in $C_6F_5IF_4$ (Eq. 5). Additionally, the nucleofugality of the C_6F_5 group (Ar in species A, Scheme 1) is higher than that of the 4-F C_6H_4 group. All three arguments explain the higher reaction rate of Eq. 4 in relation to Eq. 5. We have found that in the reaction of $C_6F_5IF_4$ (strong I–F bond) with 4-F $C_6H_4BF_2$ (weak fluoride acceptor) (Eq. 5) the quantity of the by-product [4-F $C_6H_4(C_6F_5)II$][BF4] was of the same magnitude as [4-F $C_6H_4(C_6F_5)IF_2$][BF4]. This result is in agreement with more frequent attacks of the strong Lewis acid on chlorine in the solvent CH₂Cl₂ during the slow reaction. Chloride is an effective reducing agent for [(Ar)₂IF₂]⁺ cations.⁷

All $[x-FC_6H_4(C_6F_5)IF_2][BF_4]$ salts were isolated as colorless solids in good yields. We were able to get single crystals of $[4-FC_6H_4(C_6F_5)]$ IF₂][BF₄] directly from the reaction mixture and to determine the molecular structure. [4-FC₆H₄(C₆F₅)IF₂][BF₄] crystallizes in the monoclinic space group *P*2₁/*n* (*a*=13.4487(16) Å, *b*=12.2497(15) Å, c=19.390(2) Å, $\alpha=90^{\circ}$, $\beta=94.056(2)^{\circ}$, $\gamma=90^{\circ}$) with Z=8 and two symmetry independent cations and anions in the asymmetric unit. The cation has a ψ -trigonal bipyramidal geometry with both hypervalently bonded fluorine atoms in the axial positions (Fig. 1). Both C–I (averaged 2.09(3) Å) and F–I distances (averaged 1.92(2) Å) are longer than in the $[(C_6F_5)_2IF_2]^+$ cation (averaged 2.064(5) Å and 1.913 (3) Å, respectively), mainly caused by smaller electrostatic contributions in the bonds. For the same reason the $I-C_6F_5$ distance is shorter than the I-C₆H₄F distance. In [4-FC₆H₄(C₆F₅)IF₂][BF₄] the averaged F-I-F angle is slightly increased and the C-I-C angle decreased relative to the $[(C_6F_5)_2IF_2]^+$ cation.⁷ The latter phenomena can be deduced to the larger demand of space of C₆F₅ groups.

Figure 1. Molecular structure of the [4-FC₆H₄(C₆F₅)IF₂]⁺ cation: selected distances/Å and angles/°: 11−C101 2.072(7), 11−C107 2.113(7), 11−F101 1.919(4), 11−F102 1.932(5), C101−11−C107 99.6(3), F101−11−F102 167.24(19).

There are three significant I–F contacts (2.787(5)-2.843(6) Å) between two weakly coordinating [BF₄]⁻ anions and iodine(V) of the electrophilic cation (Fig. 2): one trans to the 4-FC₆H₄ group and two in a chelating manner trans to the C₆F₅ group. These contacts are ~ 18% shorter than the sum of van der Waals radii of 3.45 Å.¹³

 $F^{3,5}$ reflects preferentially the inductive effect of the iodine center whereas the shift value of F^4 informs about the polarization of the aryl π-system. In the *x*-FC₆H₄ group $F^{3'}$ and $F^{4'}$ are significantly deshielded with respect to the monovalent *x*-FC₆H₄I parent compounds. Generally, the shift value $F^{2'}$ is strongly influenced by steric aspects of the iodine environment. We have observed a worth to mention deshielding of the fluorine atoms of $[BF_4]^-$ from $[(C_6F_5)_2IF_2]^+$ via [2- and 3-/4-FC₆H₄(C₆F₅)IF₂]⁺ to $[(4-FC_6H_4)_2]^+$.

Table	1

Characteristic ¹⁹F NMR shift values^a δ /ppm of [x-FC₆H₄(C₆F₅)IF₂][BF₄] (x=2, 3, 4) and related salts [(4-FC₆H₄)₂IF₂][BF₄] and [(C₆F₅)₂IF₂][BF₄] in MeCN at 24 °C

Compound	IF ₂	F ^{2,6}	F ^{3,5}	F^4	x - FC_6H_4	$[BF_4]^-$
$[2-FC_6H_4(C_6F_5)IF_2][BF_4]^b$	-66.6	-125.8	-154.7	-137.6	-98.9	-147.3
$[3-FC_6H_4(C_6F_5)IF_2][BF_4]^c$	-74.2	-127.0	-155.4	-138.5	-103.1	-146.1
$[4-FC_6H_4(C_6F_5)IF_2][BF_4]^d$	-74.0	-127.4	-155.5	-138.7	-99.6	-146.3
$[(4-FC_6H_4)_2IF_2][BF_4]$	-85.3	_	_	_	-100.5	-145.9
$[(C_6F_5)_2IF_2][BF_4]^e$	-58.2	-125.4	-153.7	-136.3	_	-147.7

^a For ⁿJ-coupling constants, see Experimental part.

^b 2-FC₆H₄I and 2-FC₆H₄IF₂ δ /ppm: -93.4 and -97.6, -163.8 (IF₂).

^c 3-FC₆H₄I and 3-FC₆H₄IF₂ δ /ppm: -110.3 and -108.1, -173.0 (IF₂).

^d 4-FC₆H₄I and 4-FC₆H₄IF₂ δ /ppm: -114.2 and -107.9, -171.1 (IF₂).

^e C_6F_5I and $C_6F_5IF_2 \delta$ /ppm: -120.2, -160.4, -153.6 and -122.9, -157.0, -144.5, -160.6 (IF_2).

The carbon atom C¹ of the C₆F₅ group in $[x-FC_6H_4(C_6F_5)IF_2]^+$ is slightly more deshielded than in $[(C_6F_5)IF_2]^+$ (Tables 2). Both carbon atoms C¹ and C^{1'} of each $[x-FC_6H_4(C_6F_5)IF_2]^+$ cation are deshielded by 41.2–45.1 ppm with respect to $x-FC_6H_4$ I or C₆F₅I, respectively.

Finally, the fluoro-oxidizer property of [4-FC₆H₄(C₆F₅)IF₂][BF₄] in reactions with an excess of $E(C_6F_5)_3$ (E=P, As, Sb, Bi) (Eq. 7) and C₆F₅I or 4-FC₆H₄I (Eq. 8) in MeCN will be discussed. The addition of two fluorine atoms to $E(C_6F_5)_3$ under total consumption of [4-FC₆H₄(C₆F₅)IF₂][BF₄] proceeded comparatively fast for E=As (3.5 h) and Sb (0.5 h), whereas the long reaction times for E=P and Bi were accompanied by consecutive reactions. In case of E=P approx. one-third of $(C_6F_5)_3PF_2$ was hydrolyzed by water vapor, which penetrates through the thin FEP-wall of the trap. In case of $E=Bi(C_6F_5)_3$ no $(C_6F_5)_3BiF_2$ was observed and $[4-FC_6H_4(C_6F_5)I][BF_4]$ was only a minor product besides the major C_6F_5H , $[(C_6F_5)_2I][BF_4]$, and 1,4- $F_2C_6H_4$. The latter two can be explained by elimination of a higher pentafluorophenylated iodonium(V) species like [4-FC₆H₄(C₆F₅)₂IF][BF₄]. The F/C₆F₅ substitution in IF₅ by $Bi(C_6F_5)_3$ is well known.¹¹ It is important to mention that all reactions of $[(C_6F_5)_2IF_2][BF_4]$ with $E(C_6F_5)_3$ proceeded significant faster than with $[4-FC_6H_4(C_6F_5)IF_2][BF_4]$ and differing with $Bi(C_6F_5)_3$ the desired product $(C_6F_5)_3BiF_2$ was obtained.⁷ [4-FC₆H₄(C₆F₅)IF₂][BF₄] reacted with 4-FC₆H₄I and C_6F_5I under fluorine addition (Eq. 8). The reaction with 4-FC₆H₄I proceeded approx. four times faster than with C_6F_5I , where 11 d were needed for the total consumption of $[4-FC_6H_4(C_6F_5)IF_2]$ [BF₄].

Characteristic ¹³C NMR shift values^a δ /ppm of [x-FC₆H₄(C₆F₅)IF₂][BF₄] (x=2, 3, 4) and related salts [(4-FC₆H₄)₂IF₂][BF₄] and [(C₆F₅)₂IF₂][BF₄] in MeCN at 24 °C

Compound	C ₆ F ₅ group			<i>x</i> -FC ₆ H ₄ g	x-FC ₆ H ₄ group					
	C ¹	C ^{2,6}	C ^{3,5}	C ⁴	C ^{1′}	C ^{2′}	C ^{3′}	C ^{4′}	C ^{5′}	C ^{6′}
[2-FC ₆ H ₄ (C ₆ F ₅)IF ₂][BF ₄]	113.5	147.0	140.0	148.5	125.7	159.6	120.8	129.4	132.2	140.5
$[3-FC_6H_4(C_6F_5)IF_2][BF_4]$	114.0	146.8	139.4	147.9	135.8	118.6	164.4	124.5	134.6	127.4
$[4-FC_6H_4(C_6F_5)IF_2][BF_4]$	114.1	146.9	139.6	148.0	129.1	134.4	121.4	167.8	121.4	134.4
$[(4-FC_6H_4)_2IF_2][BF_4]$	_	_	_	_	133.4	133.2	120.9	167.3	120.9	133.2
$[(C_6F_5)_2IF_2][BF_4]$	112.8	146.9	140.0	148.8	—	—	—	—	—	_

^a For ⁿJ-coupling constants, see Experimental part.

Figure 2. Cation-anion contacts in [4-FC₆H₄(C₆F₅)IF₂][BF₄].

All three [*x*-FC₆H₄(C₆F₅)IF₂][BF₄] salts can be stored at ambient temperature under an dry atmosphere without decomposition. DSC informed that decomposition proceeded without proceeding melting in the series [3-FC₆H₄(C₆F₅)IF₂][BF₄] (134.3 °C)<[4-FC₆H₄(C₆F₅)IF₂][BF₄] (142.6 °C)<[2-FC₆H₄(C₆F₅)IF₂][BF₄] (197.4 °C) according to their *T*_{onset} data.

The Raman data were assigned by comparison with the parent compounds *x*-FC₆H₄I and C₆F₅I and based on DFT-calculations (B3LYP/cc-pVTZ-PP). The characteristic symmetrical IF₂ vibration in [*x*-FC₆H₄(C₆F₅)IF₂][BF₄] salts gave rise to intensive Raman bands at 556 (*x*=2), 554 (*x*=3), and 542 cm⁻¹ (*x*=4). The IF₂ deformation mode appeared at 175 (*n*=2), 154 (*n*=3), and 163 cm⁻¹ (*n*=4) in the same region as it was found for C₆F₅IF₂ (174 cm⁻¹).¹⁴

[*x*-FC₆H₄(C₆F₅)IF₂][BF₄] salts are well soluble in MeCN. In such solutions we can assume a competition between the neutral base MeCN and the anion to coordinate at iodine(V). The NMR data inform of this process. In the ¹⁹F NMR (Table 1) the shielding trend of the IF₂ group from *x*=2 to 4 and the highest shielding in [(4-FC₆H₄)₂IF₂][BF₄] and the lowest in [(C₆F₅)₂IF₂][BF₄] are in agreement with the inductive effect of the involved aryl groups and correlate with the individual partial charge on iodine(V). A high partial positive charge on iodine polarizes not only the attached fluorine atoms but also both aryl groups. The C₆F₅ group is a good probe to inform about such a polarization process. The shift value of

4. Conclusion

The Lewis acid assisted substitution of a hypervalently bonded fluorine atom by an aryl group can be applied to aryliodine(V) tetrafluorides and delivers [Ar'(Ar)IF₂][BF₄] iodonium(V) salts with a cation of high electrophilicity. The electrophilic nature of the cation can be deduced from cation—anion interactions in the solid state and from ¹⁹F NMR data in MeCN for solutions. This type of salts opens a new application for polyvalent iodine compounds, namely to act as a fluoro-oxidizer. Di(aryl)difluoroiodonium(V) salts as well with a symmetrical as with a unsymmetrical constitution concerning both aryl groups are accessible by the reaction of ArIF₄ and ArBF₂ in weakly coordinating solvents. There are reasonable arguments that the reported method for di(aryl) difluoroiodonium salts can be even transferred to alkynyl- and alkenyl-iodonium compounds.

5. Experimental part

5.1. General

All moisture sensitive compounds were handled under an atmosphere of dry argon. Reactions were carried out in vessels constructed from FEP tubes (o.d.=4.1 mm, i.d.=3.5 mm or o. d.=9.0 mm, i.d=8.0 mm, FEP is a co-polymer of $(CF_2CF_2)_n$ and $(CF_2CF_2)_n$ (CF₃)F)_m). Acetonitrile was refluxed and distilled from KMnO₄ and repeatedly refluxed and distilled from P₄O₁₀. Dichloromethane was treated in sequence with concd H₂SO₄, Na₂CO_{3(ag)}, and H₂O and finally refluxed and distilled from P₄O₁₀. NMR spectra were recorded on a Bruker spectrometer AVANCE 300 (¹³C at 75.47 MHz, ¹¹B at 96.29 MHz, ¹⁹F at 282.40 MHz), and ¹H at 300.13 MHz. The chemical shifts were referenced to BF₃·OEt₂/CDCl₃ 15% v/v (¹¹B), TMS (¹³C, ¹H), and CCl₃F(¹⁹F)(C₆F₆ as a secondary reference, $\delta = -162.9$ ppm). Shift values of overlapping signals are marked by o. The Raman spectra were recorded on a Bruker FT-Raman spectrometer RFS 100/S using the 1064 nm line of a Nd:YAG laser. The backscattered (180°) radiation was sampled and analyzed (Stoke range: $50-4000 \text{ cm}^{-1}$). The powdered sample was measured in a melting point capillary (512 scans and a resolution of 2 cm⁻¹) using a laser power of \leq 500 mW. X-ray diffraction data were collected using a Bruker AXS SMART APEX diffractometer equipped with a CCD area detector APEXII. For solution and refinement of the crystal structures the programs SHELXTL (version 6.10) and SADABS (version 2.03) were used. CCDC 770539 contains the supplementary crystallographic data for [4- $FC_6H_4(C_6F_5)IF_2][BF_4]$ which can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk). C₆F₅BF₂,¹⁵ x- $FC_6H_4IF_4$, ¹⁶ and $C_6F_5IF_4$ ¹¹ were synthesized by literature procedures. (P(C₆F₅)₃, ¹⁷ As(C₆F₅)₃, ¹⁸ Sb(C₆F₅)₃, ¹⁸ and Bi(C₆F₅)₃¹⁹) were synthesized analogue to literature by reactions of C₆F₅MgBr with the corresponding element(III) trichlorides in Et₂O.

5.2. [2-FC₆H₄(C₆F₅)IF₂][BF₄]

A cold solution (-78 °C) of $C_6F_5BF_2$ (1.10 mmol) in CH_2CI_2 (1.3 mL) was added in portions to a cold (-40 °C) vigorously stirred suspension of 2-FC₆H₄IF₄ (329 mg, 1.10 mmol) in CH_2CI_2 (3 mL). The suspension was warmed to 20 °C and after 1.5 h the mother liquor was separated and the solid residue washed with 1 mL CH_2CI_2 . The solid was pumped in vacuum at 20 °C and gave 274 mg of a mixture of [2-FC₆H₄(C₆F₅)IF₂][BF₄] (0.488 mmol, 44%) and [2-FC₆H₄(C₆F₅)[A][C₆F₄][C₆F₅][A][C₆F₆

DSC: T_{onset}=197.4 °C (exothermic effect).

¹⁹F NMR (MeCN, 24 °C) [2-FC₆H₄(C₆F₅)IF₂][BF₄] δ : -66.6 (tdd, ⁴J (F^(IF),F^{2,6})=14 Hz, ⁴J(F^(IF),F^{2'})=14 Hz, ⁶J(F^(IF),F⁴)=2 Hz, IF₂, 2F); -98.9

(m, 2-*F*C₆H₄, 1F); -125.8 (br, $\Delta \nu_{V_2}$ =55 Hz, o-C₆F₅, 2F); -137.6 (ttt, ³*J* (F⁴, F^{3,5})=21 Hz, ⁴*J*(F⁴, F^{2,6})=9 Hz, ⁶*J*(F⁴, F^(IF))=2 Hz, *p*-C₆F₅, 1F); -154.7 (m, *m*-C₆F₅, 2F); [2-FC₆H₄(C₆F₅)1][BF₄] δ : -94.7 (m, 2-*F*C₆H₄, 1F); -121.1 (m, o-C₆F₅, 2F); -142.2 (tt, ³*J*(F⁴, F^{3,5})=20 Hz, ⁴*J*(F⁴, F^{2,6})=6 Hz, *p*-C₆F₅, 1F); -155.8 (m, *m*-C₆F₅, 2F); [BF₄]⁻ δ :=-147.3 (s, BF₄, 4F).

¹H NMR (CH₃CN, 24 °C) [2-FC₆H₄(C₆F₅)IF₂]⁺ δ : 8.2 (m, H^{5'}, 1H); 8.0 (m, H^{6'}, 1H); 7.8 (mo, H^{4'}, 1H); 7.8 (mo, H^{3'}, 1H); [2-FC₆H₄(C₆F₅) I]⁺ δ : 8.3 (m, H^{5'}, 1H); 7.8 (m, H^{6'}, 1H); 7.5 (m, H^{3'}, 1H); 7.4 (m, H^{4'}, 1H); CH₂Cl₂ δ : 5.4 (s); molar ratio [(2-FC₆H₄)₂IF₂]⁺+[(2-FC₆H₄)₂I]⁺/CH₂Cl₂=100:12.

¹³C NMR (CH₃CN, 24 °C) [2-FC₆H₄(C₆F₅)IF₂]⁺ δ : 159.6 (dm, ¹*J*(C^{2'}, F^{2'})=261 Hz, 2-FC₆H₄, C^{2'}), 148.5 (dm, ¹*J*(C⁴, F⁴)=265 Hz, C₆F₅, C⁴); 147.0 (dm, ¹*J*(C², F²)=¹*J*(C⁶, F⁶)=261 Hz, C₆F₅, C^{2.6}); 140.5 (dmo, ¹*J*(C^{6'}, H^{6'})=175 Hz, 2-FC₆H₄, C^{6'}); 140.0 (dmo, ¹*J*(C³, F³)=¹*J*(C⁵, F⁵)=253 Hz, C₆F₅, C^{3.5}); 132.2 (dm, ¹*J*(C^{5'}, H^{5'})=173 Hz, 2-FC₆H₄, C^{5'}); 129.4 (dm, ¹*J*(C^{4'}, H^{4'})=171 Hz, 2-FC₆H₄, C^{4'}); 125.7 (m, 2-FC₆H₄, C^{1'}); 120.8 (dm, ¹*J*(C^{3'}, H^{3'})=174 Hz, 2-FC₆H₄, C^{3'}); 113.5 (m, C₆F₅, C¹).

¹¹B NMR (CH₃CN, 24 °C) [BF₄]⁻ δ : -1.3 (s, *B*F₄).

Raman (20 °C) $\bar{\nu}$: 83 (81), 136 (35), 159 (21), 175 (25), 194 (33), 210 (20), 220 (22), 244 (18), 271 (23), 353 (11), 363 (10), 374 (15), 383 (17), 441 (19), 463 (13), 494 (28), 532 (21), 556 (100), 587 (23), 617 (5), 638 (16), 680 (4), 703 (4), 762 (15), 803 (4), 823 (17), 1005 (13), 1041 (14), 1106 (4), 1134 (5), 1167 (6), 1237 (8), 1271 (6), 1297 (5), 1408 (5), 1497 (4), 1522 (3), 1575 (8), 1593 (4), 1636 (9) cm⁻¹.

5.3. [3-FC₆H₄(C₆F₅)IF₂][BF₄]

A -78 °C cold solution of C₆F₅BF₂ (0.85 mmol) in CH₂Cl₂ (1.2 mL) was added under stirring to a -40 °C cold solution of 3-FC₆H₄IF₄ (281 mg, 0.94 mmol) in CH₂Cl₂ (3 mL). Within 2 h the solution was warmed to 2 °C and formed a slightly yellow suspension. The solid was separated and washed with CH₂Cl₂ (3 mL) and pumped in vacuum at 20 °C to yield 305 mg, 0.0555 mmol, 61%. From ¹H NMR resulted that 0.42 CH₂Cl₂ are co-crystallized per [3-FC₆H₄(C₆F₅)IF₂] [BF₄].

DSC: T_{onset} =96.1 °C (endothermic effect: loss of CH₂Cl₂), T_{onset} =134.3 °C (exothermic effect).

¹⁹F NMR (CH₃CN, 24 °C) [3-FC₆H₄(C₆F₅)IF₂]⁺ δ : -73.6 (t, ⁴*J*(F^(IF), F^{2,6})=11 Hz, IF₂, 2F); -102.9 (m, 1F, 3-*F*C₆H₄); -126.7 (br, $\Delta \nu_{V_2}$ =71 Hz, *o*-C₆F₅, 2F); -138.4 (ttt, ³*J*(F⁴,F^{3,5})=20 Hz, ⁴*J*(F⁴,F^{2,6})=8 Hz, ⁶*J*(F⁴,F^(IF))=2 Hz, *p*-C₆F₅, 1F); -155.1 (m, *m*-C₆F₅, 2F); [BF₄]⁻ δ : -147.7 (s, BF₄, 4F).

¹H NMR (CH₃CN, 24 °C) [3-FC₆H₄(C₆F₅)IF₂]⁺ δ : 8.0 (mo, H^{2'}, H^{6'}, H^{5'}, 3H); 7.7 (m, H^{4'}, 1H): CH₂Cl₂ δ : 5.4 (s); molar ratio [(3-FC₆H₄) (C₆F₅)IF₂]⁺/CH₂Cl₂=100:42.

¹³C NMR (CH₃CN, 24 °C) [3-FC₆H₄(C₆F₅)IF₂]⁺ δ : 164.4 (dm, ¹*J*(C^{3'}, F^{3'})=257 Hz, 3-FC₆H₄, C^{3'}), 147.9 (dm, ¹*J*(C⁴, F⁴)=264 Hz, C₆F₅, C⁴); 146.8 (dm, ¹*J*(C², F²)=¹*J*(C⁶, F⁶)=261 Hz, C₆F₅, C^{2.6}); 139.4 (dm, ¹*J*(C³, F³)=¹*J*(C⁵, F⁵)=255 Hz, C₆F₅, C^{3.5}); 135.8 (m, 3-FC₆H₄, C^{1'}); 134.6 (dm, ¹*J*(C^{5'}, H^{5'})=173 Hz, 3-FC₆H₄, C^{5'}); 127.4 (dm, ¹*J*(C^{6'}, H^{6'})=178 Hz, 3-FC₆H₄, C^{6'}); 124.5 (dm, ¹*J*(C^{4'}, H^{4'})=168 Hz, 3-FC₆H₄, C^{4'}); 118.6 (dm, ¹*J*(C^{2'}, H^{2'})=177 Hz, 3-FC₆H₄, C^{2'}); 114.0 (m, C₆F₅, C¹).

¹¹B NMR (CH₃CN, 24 °C) [BF₄]⁻ δ : -1.3 (s, BF₄).

Raman (20 °C) $\bar{\nu}$: 84 (100), 132 (39), 154 (21), 179 (47), 242 (39), 270 (32), 349 (13), 381 (28), 440 (24), 493 (45), 518 (17), 554 (90), 587 (29), 615 (4), 645 (13), 766 (17), 800 (4), 830 (9), 994 (44), 1039 (14), 1071 (6), 1102 (5), 1167 (8), 1226 (8), 1277 (3), 1410 (3), 1476 (2), 1518 (3), 1572 (9), 1596 (5), 1636 (12), 3092 (26) cm⁻¹.

Co-crystallized CH₂Cl₂ could be removed totally from the solid by pumping further 5 h at 20 °C, 30 min at 80 °C, and 5 min at 95 °C in vacuum (3×10^{-2} h Pa). After this treatment no CH₂Cl₂ could be detected by ¹H NMR. The ¹⁹F and ¹H NMR spectra of the iodonium (V) salt was not changed after thermal treatment.

DSC Tonset: 132.7 °C (exothermic effect).

5.4. [4-FC₆H₄(C₆F₅)IF₂][BF₄]

A cold $(-30 \ ^{\circ}\text{C})$ solution of $C_6F_5BF_2$ (2.59 mmol) in CH_2Cl_2 (3.5 mL) was added to a stirred $4\text{-F}C_6H_4IF_4$ solution (0.75 g, 2.52 mmol) in CH_2Cl_2 (3 mL, $-30 \ ^{\circ}\text{C}$). A suspension resulted when warmed to 10 $^{\circ}\text{C}$ within 3 h. The solid product was isolated and washed four times with CH_2Cl_2 (each 1 mL). Colorless [4-FC₆H₄(C₆F₅)IF₂][BF₄] was pumped in vacuum at 20 $^{\circ}\text{C}$ for 2 h. Yield 0.75 g, 1.45 mmol, 58%. Single crystals were obtained directly from the reaction mixture.

DSC: Tonset=142.6 °C (exothermic effect).

¹⁹F NMR (CH₃CN, 24 °C) [4-FC₆H₄(C₆F₅)IF₂]⁺ δ : -74.0 (t, ⁴*J*(F^(IF), F^{2,6})=11 Hz, IF₂, 2F); -99.6 (m, 4-FC₆H₄, 1F); -127.4 (br, $\Delta\nu_{\nu_{2}}$ =84 Hz, o-C₆F₅, 2F); -138.7 (ttt, ³*J*(F⁴,F^{3.5})=20 Hz, ⁴*J*(F⁴,F^{2.6})=9 Hz, ⁶*J*(F⁴, F^(IF))=2 Hz, p-C₆F₅, 1F); -155.5 (m, m-C₆F₅, 2F); [BF₄]⁻ δ : -146.3 (s, 4F, BF₄).

¹H NMR (CH₃CN, 24 °C) [4-FC₆H₄(C₆F₅)IF₂]⁺ δ : 8.3 (dd, ³*J*(H^{2'}, H^{3'})=³*J*(H^{6'}, H^{5'})=10 Hz, ⁴*J*(H^{2',6'}, F⁴)=4 Hz, H^{2',6'}, 2H); 7.7 (dd, ³*J*(H^{3'}, H^{2'})=³*J*(H^{5'}, H^{6'})=10 Hz, ³*J*(H^{3',5'}, F⁴)=8 Hz, H^{3',5'}, 2H).

¹¹B NMR (CH₃CN, 24 °C) [BF₄]⁻ δ : -1.5 (s, $\Delta v_{\frac{1}{2}}$ =2 Hz).

Raman (20 °C) $\overline{\nu}$: 84 (100), 141 (39), 163 (27), 189 (67), 237 (52), 255 (16), 269 (17), 314 (7), 335 (10), 355 (18), 374 (23), 441 (25), 495 (50), 542 (83), 565 (39), 588 (28), 621 (18), 763 (14), 807 (16), 821 (11), 986 (15), 997 (14), 1026 (20), 1104 (5), 1163 (17), 1254 (8), 1297 (3), 1407 (5), 1475 (7), 1523 (4), 1577 (11), 1593 (8), 1637 (11), 3090 (26), 3118 (10) cm⁻¹.

5.5. Reaction of C₆F₅IF₄ with 4-FC₆H₄BF₂

When a cold $(-45 \degree C)$ solution of $4\text{-FC}_6\text{H}_4\text{BF}_2$ (0.13 mmol) in CH₂Cl₂ (700 µL) was mixed with C₆F₅IF₄ (43 mg, 0.12 mmol) in CH₂Cl₂ (200 µL, -45 °C), immediately a black suspension resulted, which was warmed to 15 °C within 7 h. After 101 h at 20 °C CH₂Cl₂ was removed in vacuum and the composition of the black residue was characterized by ¹⁹F NMR in MeCN solution.

¹⁹F NMR (MeCN, 24 °C) [4-FC₆H₄(C₆F₅)IF₂]⁺ see above, [4-FC₆H₄(C₆F₅)I]⁺ δ : -102.8 (m, 4-FC₆H₄, 1F); -121.1 (m, *o*-C₆F₅, 2F); -142.4 (tt, ³*J*(F⁴,F^{3,5})=20 Hz, ⁴*J*(F⁴,F^{2,6})=6 Hz, *p*-C₆F₅, 1F); -155.8 (m, *m*-C₆F₅, 2F); C₆F₅I δ : -120.1 (m, *o*-C₆F₅, 2F); -153.3 (tt, ³*J*(F⁴,F^{3,5})=19 Hz, ⁴*J*(F⁴,F^{2,6})=2 Hz, *p*-C₆F₅, 1F); -160.1 (m, *m*-C₆F₅, 2F); [BF₄]⁻ δ : -147.3 (s, BF₄, 4F); molar ratio [4-FC₆H₄(C₆F₅)IF₂]⁺/ [4-FC₆H₄(C₆F₅)I]⁺/C₆F₅I/[BF₄]⁻=52:46:3:97.

5.6. [(4-FC₆H₄)₂IF₂][BF₄]

A cold (-78 °C) solution of $4\text{-FC}_6\text{H}_4\text{BF}_2$ (1.4 mmol) in CH₂Cl₂ (3 mL) was added in three portions to a cold (-45 °C) suspension of $4\text{-FC}_6\text{H}_4\text{IF}_4$ (410 mg, 1.38 mmol) in CH₂Cl₂ (3.5 mL). Spontaneously a black suspension was formed, which was warmed to 20 °C. After 170 min the black solid was separated from the mother liquor, washed with CH₂Cl₂ (100 µL), and pumped in vacuum at 20 °C for 60 min. The solid (270 mg) contained [(4-FC₆H₄)₂IF₂][BF₄] (244 mg, 0.54 mmol, 39%), [(4-FC₆H₄)₂I][BF₄] (26 mg, 0.06 mmol, 5%), and still small quantities of CH₂Cl₂.

DSC: *T*_{onset}=187.9 °C (exothermic effect).

¹⁹F NMR (CH₃CN, 24 °C) [(4-FC₆H₄)₂IF₂]⁺ δ : -85.3 (m, IF₂, 2F); -100.5 (m, 4-FC₆H₄, 2F); [(4-FC₆H₄)₂I]⁺ δ : -104.4 (m, 4-FC₆H₄, 2F); ¹H NMR (CH₃CN, 24 °C) [(4-FC₆H₄)₂IF₂]⁺ δ : 8.1 (dd, ³*J*(H²,H³)=³*J*(H⁶,H⁵)=9 Hz, ⁴*J*(H^{2,6},F⁴)=4 Hz, H^{2,6}, 4H); 7.6 (dd, ³*J*(H³,H²)=³*J*(H⁵, H⁶)=9 Hz, ³*J*(H^{3,5},F⁴)=8 Hz, H^{3,5}, 4H); [(4-FC₆H₄)₂I]⁺ δ : 8.1 (dd, ³*J*(H^{3,4}, H²)=³*J*(H⁶,H⁵)=9 Hz, ⁴*J*(H^{2,6},F⁴)=5 Hz, H^{2,6}, 4H); 7.3 (dd, ³*J*(H^{3,4}, H²)=³*J*(H⁵,H⁶)=9 Hz, ³*J*(H^{3,5},F⁴)=9 Hz, H^{3,5}, 4H); CH₂Cl₂ δ : 5.4 (s, 2H); molar ratio [(4-FC₆H₄)₂IF₂]⁺+[(4-FC₆H₄)₂I]⁺/CH₂Cl₂=100:8.

¹³C NMR (CH₃CN, 24 °C) [(4-FC₆H₄)₂IF₂]⁺ δ : 167.3 (dm, ¹*J*(C⁴,F⁴)= 258 Hz, C⁴); 133.4 (m, C¹); 133.2 (dm, ¹*J*(C²,H²)=¹*J*(C⁶,H⁶)=176 Hz, C^{2.6}); 120.9 (ddd, ¹*J*(C³,H³)=¹*J*(C⁵,H⁵)=172 Hz, ²*J*(C^{3,5},F⁴)=24 Hz, ²*J*(C³,H²)=²*J*(C⁵,H⁶)=4 Hz, C^{3.5}).

¹¹B NMR (CH₃CN, 24 °C) [BF₄]⁻ δ : -1.4 (s, *B*F₄).

5.7. Testing of the fluoro-oxidizer potential of $[4-FC_6H_4(C_6F_5) IF_2][BF_4]$

5.7.1. Reactions of $[4-FC_6H_4(C_6F_5)IF_2][BF_4]$ with $E(C_6F_5)_3$ (E=P, As, Sb, Bi) in MeCN at 20 °C. The following MeCN solutions of $E(C_6F_5)_3$ were prepared in FEP-inliners: (a) $P(C_6F_5)_3$ (89 mg, 0.17 mmol)/600 µL, (b) As(C_6F_5)_3 (75 mg, 0.13 mmol)/500 µL, (c) Sb(C_6F_5)_3 (96 mg, 0.15 mmol)/500 µL, (d) Bi(C_6F_5)_3 (106 mg, 0.149 mmol)/500 µL. Separately the corresponding $[4-FC_6H_4(C_6F_5)IF_2][BF_4]$ solutions were prepared each in 300 µL: (a) 40 mg, 0.078 mmol, (b) 42 mg, 0.082 mmol, (c) 38 mg, 0.075 mmol, (d) 40 mg, 0.077 mmol. After mixing of the four combinations the reaction progress was monitored by ¹⁹F NMR till all $[4-FC_6H_4(C_6F_5)IF_2][BF_4]$ was consumed.

(a) 19 F NMR (CH₃CN, 24 °C, after 9 d)

 $\begin{array}{l} (C_{6}F_{5})_{3}PF_{2} \ \delta: \ 2.5 \ (dhep, \ ^{1}J(F^{(PF)},P)=690 \ Hz, \ ^{4}J(F^{(PF)}, \ ^{2.6})=16 \ Hz, \\ PF_{2}, 2F); \ -132.8 \ (m, \ o-C_{6}F_{5}, 6F); \ -146.2 \ (t, \ ^{3}J(F^{4},F^{3.5})=20 \ Hz, \ p-C_{6}F_{5}, \\ 3F); \ -159.3 \ (m, \ m-C_{6}F_{5}, 6F); \ (C_{6}F_{5})_{3}P \ \delta: \ -130.2 \ (m, \ o-C_{6}F_{5}, 6F); \\ -149.0 \ (mo, \ p-C_{6}F_{5}, \ 3F); \ -160.8 \ (m, \ m-C_{6}F_{5}, \ 6F); \ (C_{6}F_{5})_{3}PO \ \delta: \\ -132.1 \ (m, \ o-C_{6}F_{5}, \ 6F); \ -143.4 \ (m, \ p-C_{6}F_{5}, \ 3F); \ -159.0 \ (m, \ m-C_{6}F_{5}, \\ 6F); \ [4-FC_{6}H_{4}(C_{6}F_{5})I]^{+} \ \delta: \ -102.8 \ (m, \ 4-FC_{6}H_{4}, \ 1F); \ -121.3 \ (m, \ o-C_{6}F_{5}, \ 2F); \ -142.5 \ (tt, \ ^{3}J(F^{4},F^{3.5})=20 \ Hz, \ ^{4}J(F^{4},F^{2.6})=6 \ Hz, \ p-C_{6}F_{5}, \ 1F); \\ -155.9 \ (m, \ m-C_{6}F_{5}, \ 2F); \ [BF_{4}]^{-} \ \delta: \ -149.0 \ (so, \ BF_{4}, \ 4F); \ HF \ \delta: \ -182.2 \ (d, \ ^{1}J(F,H)=484 \ Hz); \ molar \ ratio \ of \ products: \ (C_{6}F_{5})_{3}PF_{2}/(C_{6}F_{5})_{3}P/ \ (C_{6}F_{5})_{3}PO/[4-FC_{6}H_{4}(C_{6}F_{5})I]^{+}/HF/[BF_{4}]^{-}=20:40:10:30:27:31. \end{array}$

(b) ¹⁹F NMR (CH₃CN, 24 °C, after 3.5 h)

 $\begin{array}{l} (C_{6}F_{5})_{3}AsF_{2} \ \delta: \ -22.1 \ (hep, \ {}^{4}J(F^{(AsF)},F^{2.6}) = 13 \ Hz, \ AsF_{2}, \ 2F); \ -131.7 \\ (m, o-C_{6}F_{5}, \ 6F); \ -144.7 \ (t, \ {}^{3}J(F^{4},F^{3.5}) = 20 \ Hz, \ p-C_{6}F_{5}, \ 3F); -157.9 \ (m, m-C_{6}F_{5}, \ 6F); \ (C_{6}F_{5})_{3}As \ \delta: \ -128.1 \ (m, \ o-C_{6}F_{5}, \ 6F); \ -149.8 \ (t, \ {}^{3}J(F^{4},F^{3.5}) = 20 \ Hz, \ p-C_{6}F_{5}, \ 3F); \ -160.3 \ (m, \ m-C_{6}F_{5}, \ 6F); \ [4-FC_{6}H_{4}(C_{6}F_{5})I]^{+} \ \delta: \ -102.6 \ (m, \ 4-FC_{6}H_{4}, 1F); \ -121.0 \ (m, \ o-C_{6}F_{5}, \ 2F); \ -142.3 \ (tt, \ {}^{3}J(F^{4},F^{3.5}) = 20 \ Hz, \ {}^{4}J(F^{4},F^{2.6}) = 6 \ Hz, \ p-C_{6}F_{5}, \ 1F); \ -155.6 \ (m, \ m-C_{6}F_{5}, \ 2F); \ [BF_{4}]^{-} \ \delta: \ -148.5 \ (s, \ \Delta\delta \ (^{10}BF_{4}-^{-11}BF_{4}) = 0.053, \ BF_{4}, \ 4F); \ molar \ ratio \ of \ products: \ (C_{6}F_{5})_{3}AsF_{2}/(C_{6}F_{5})_{3}As/[4-FC_{6}H_{4}(C_{6}F_{5})I]^{+}/[BF_{4}]^{-} = 37:24:39:39. \end{array}$

(c) 19 F NMR (CH₃CN, 24 °C, after 0.5 h)

 $\begin{array}{l} (C_6F_5)_3SbF_2 \quad & \delta: \ -79.1 \ (br, \ \Delta\nu_{\nu_2}=95 \ Hz, \ SbF_2, \ 2F); \ -126.1 \ (br, \ \Delta\nu_{\nu_2}=45 \ Hz, \ o-C_6F_5, \ 6F); \ -144.2 \ (br, \ \Delta\nu_{\nu_2}=111 \ Hz, \ p-C_6F_5, \ 3F); \ -157.1 \ (br, \ \Delta\nu_{\nu_2}=59 \ Hz, \ m-C_6F_5, \ 6F); \ (C_6F_5)_3Sb \ & \delta: \ -121.8 \ (m, \ o-C_6F_5, \ 6F); \ -150.5 \ (tt, \ {}^3J(F^4,F^{3.5})=19 \ Hz, \ {}^4J(F^4,F^{2.6})=3 \ Hz, \ p-C_6F_5, \ 3F); \ -160.4 \ (m, \ m-C_6F_5, \ 6F); \ [4-FC_6H_4(C_6F_5)]^+ \ & \delta: \ -102.8 \ (m, \ 4-FC_6H_4, \ 1F); \ -120.3 \ (m, \ o-C_6F_5, \ 2F); \ -142.5 \ (tt, \ {}^3J(F^4,F^{3.5})=20 \ Hz, \ {}^4J(F^4,F^{2.6})=6 \ Hz, \ p-C_6F_5, \ 1F); \ -155.9 \ (m, \ m-C_6F_5, \ 2F); \ [BF_4]^- \ & \delta: \ -149.0 \ (s, \ BF_4, \ 4F); \ molar \ ratio \ of \ products: \ (C_6F_5)_3SbF_2/(C_6F_5)_3Sb/[4-FC_6H_4(C_6F_5) \ 1]^+/[BF_4]^-=22:53:25:23. \end{array}$

(d) ¹⁹F NMR (CH₃CN, 24 °C, after 70 h)

 $\begin{array}{l} (C_{6}F_{5})_{3}Bi \,\,\delta:\,-117.1 \,\,(m,\,o-C_{6}F_{5},\,6F);\,\,-152.1 \,\,(t,\,^{3}J(F^{4},F^{3.5})=19\,Hz,\\ p-C_{6}F_{5},\,3F);\,\,-160.0 \,\,(m,\,m-C_{6}F_{5},\,6F);\,\,[4-FC_{6}H_{4}(C_{6}F_{5})I]^{+} \,\,\delta:\,-102.8 \\ (m,\,4-FC_{6}H_{4},\,1F);\,\,-121.3 \,\,(m,\,o-C_{6}F_{5},\,2F);-142.5 \,\,(tt,\,\,^{3}J(F^{4},F^{3.5})=20\,Hz,\,\,^{4}J(F^{4},F^{2.6})=6\,Hz,\,\,p-C_{6}F_{5},\,1F);\,\,-155.9 \,\,(m,\,m-C_{6}F_{5},\,2F);\\ [(C_{6}F_{5})_{2}I]^{+} \,\,\delta:\,-120.4 \,\,(m,\,o-C_{6}F_{5},\,4F);\,\,-141.3 \,\,(tt,\,^{3}J(F^{4},F^{3.5})=20\,Hz,\,^{4}J(F^{4},F^{2.6})=6\,Hz,\,\,p-C_{6}F_{5},\,2F);\,\,-155.5 \,\,(m,\,m-C_{6}F_{5},\,4F);\,\,C_{6}F_{5}H \,\,\delta:\,-139.2 \,\,(m,\,o-C_{6}F_{5},\,2F);\,\,-155.8 \,\,(t,\,\,^{3}J(F^{4},F^{3.5})=19\,Hz,\,\,p-C_{6}F_{5},\,1F);\\ -162.7 \,\,(m,\,m-C_{6}F_{5},\,2F);\,\,1.4-F_{2}C_{6}H_{4} \,\,\delta:\,-119.6 \,\,(tt,\,^{3}J(F,H)=6\,Hz,\,^{4}J(F,H)=6\,Hz,\,^{4}J(F,H)=6\,Hz,\,^{4}J(F,H)=6\,Hz,\,^{2}F);\,[BF_{4}]^{-} \,\,\delta:\,-148.8 \,\,(s,\,\Delta\delta\,(^{10}BF_{4}-^{11}BF_{4})=0.054,\,BF_{4},\,4F);\\ molar \,\,ratio\,\,o\,\,f\,\,products:\,\,(C_{6}F_{5})_{3}Bi/[4-FC_{6}H_{4}(C_{6}F_{5})I]^{+}/[(C_{6}F_{5})_{2}I]^{+}/C_{6}F_{5}H/1,4-F_{2}C_{6}H_{4} \,\,/[BF_{4}]^{-}=46:7:22:24:13:31. \end{array}$

5.7.2. Reactions of $[4\text{-}FC_6H_4(C_6F_5)IF_2][BF_4]$ with Arl $(Ar=C_6F_5I, (a) \text{ or } 4\text{-}FC_6H_4(b))$ in MeCN at 20 °C. 16 µL, 0.12 mmol C_6F_5I (a) or 14 µL, 0.12 mmol 4-FC₆H₄I (b) was added to solutions of $[4\text{-}FC_6H_4(C_6F_5)$ IF₂][BF₄] in MeCN: (a) 31 mg, 0.060 mmol in 300 µL (a) or 26 mg, 0.051 mmol in 300 µL (b). After mixing of the two combinations the reaction progress was monitored by ¹⁹F NMR till all $[4\text{-}FC_6H_4(C_6F_5)$ IF₂][BF₄] was consumed.

(a) 19 F NMR (CH₃CN, 24 °C, after 11 d)

$$\begin{split} &C_6F_5IF_2\ \delta:-122.1\ (m,\ o-C_6F_5,\ 2F);\ -143.7\ (m,\ p-C_6F_5,\ 1F);\ -156.2\\ &(m,\ m-C_6F_5,\ 2F);\ -159.4\ (so,\ IF_2,\ 2F);\ [4-FC_6H_4(C_6F_5)I]^+\ \delta:\ -102.0\\ &(mo,\ 4-FC_6H_4,\ 1F);\ -120.4\ (m,\ o-C_6F_5,\ 2F);\ -141.7\ (m,\ p-C_6F_5,\ 1F);\\ -155.1\ (m,\ m-C_6F_5,\ 2F);\ [4-FC_6H_4(C_6F_5)IO]^+\ \delta:\ -102.1\ (mo,\ 4-FC_6H_4,\ 1F);\ -128.1\ (m,\ o-C_6F_5,\ 2F);\ -140.5\ (m,\ p-C_6F_5,\ 1F);\ -155.7\ (m,\ m-C_6F_5,\ 2F);\ -152.6\ (t,\ ^3/(F^4,F^{3.5})=20\ Hz,\ p-C_6F_5,\ 1F);\ -159.4\ (mo,\ m-C_6F_5,\ 2F);\ -152.6\ (t,\ ^3/(F^4,F^{3.5})=20\ Hz,\ p-C_6F_5,\ 1F);\ -159.4\ (mo,\ m-C_6F_5,\ 2F);\ [BF_4]^-\ \delta:\ -147.3\ (s,\ BF_4,\ 4F);\ molar\ ratio\ of\ products:\ C_6F_5IF_2/[4-FC_6H_4(C_6F_5)I]^+/[4-FC_6H_6F_5]^+/[4-FC_6H_6F_5]^+/[4-FC_6H_6F_5]^+/[4-FC_6H_6F_5]^+/[4-FC_6H_6F_5]^+/[4-$$

(b) 19 F NMR (CH₃CN, 24 °C, after 71 h)

 $\begin{array}{l} 4\text{-}FC_{6}H_{4}IF_{2} \ \delta: \ -107.8 \ (m, \ 4\text{-}FC_{6}H_{4}, \ 1F); \ -171.2 \ (s, \ IF_{2}, \ 2F); \ [4\text{-}FC_{6}H_{4}(C_{6}F_{5})I]^{+} \ \delta: \ -102.7 \ (tt, \ ^{3}\textit{J}(F^{4}, H^{3.5}) = 9 \ Hz, \ ^{4}\textit{J}(F^{4}, H^{2.6}) = 4 \ Hz, \ 4\text{-}FC_{6}H_{4}, \ 1F); \ -121.2 \ (m, \ o\text{-}C_{6}F_{5}, \ 2F); \ -142.4 \ (tt, \ ^{3}\textit{J}(F^{4}, F^{3.5}) = 20 \ Hz, \ ^{4}\textit{J}(F^{4}, F^{2.6}) = 6 \ Hz, \ p\text{-}C_{6}F_{5}, \ 1F); \ -155.7 \ (m, \ m\text{-}C_{6}F_{5}, \ 2F); \ 4\text{-}FC_{6}H_{4}I \ \delta: \end{array}$

-114.5 (tt, ${}^{3}J(F^{4},H^{3,5})=9$ Hz, ${}^{4}J(F^{4},H^{2,6})=5$ Hz, 4-*F*C₆H₄, 1F); 4-FC₆H₄IOF₂ δ : -27.0 (s, IOF₂, 2F); -103.7 (m, 4-*F*C₆H₄, 1F); [BF₄]⁻ δ : -148.4 (s, BF₄, 4F); molar ratio of products: 4-FC₆H₄IF₂/[4-FC₆H₄(C₆F₅)I]⁺/4-FC₆H₄I/4-FC₆H₄IOF₂/[BF₄]⁻=21:29:48:2:29.

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2010.04.047.

References and notes

- (a) Beringer, F. M.; Gindler, E. M. Organic Compounds of Polyvalent Iodine. Iodine Abstr. Rev.; Chilean Iodine Educational Bureau: New York, NY, 1956; Vol. 3, 1–70; (b) Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VCH: Weinheim, 1992; pp 207–306.
- 2. Masson, I.; Race, E.; Pounder, F. E. J. Chem. Soc. 1935, 1669-1670.
- B. Beringer, F. M.; Bodlaender, P. J. Org. Chem. **1968**, 33, 2981–2984.
- Lyalin, V. V.; Orda, V. V.; Alekseeva, L. A.; Yagupol'skii, L. M. Zh. Org. Khim. 1972, 8, 210–211.
- 5. Hoyer, S. Dissertation, FU Berlin, 2004.
- Helber, J.; Frohn, H.-J.; Klose, A.; Scholten, T. Arkivoc Online Vers.: http://www. arkat-usa.org/ark/journal/2003/Varvoglis/AV-682A/682.htm; Arkivoc Print Vers. (ISSN 1424-6369) 2003, Part VI, 71–82.
- 7. Frohn, H.-J.; Wenda, A.; Flörke, U. Z. Anorg. Allg. Chem. 2008, 634, 764-770.
- Frohn, H.-J.; Bardin, V. V. In *Recent Developments in Carbocation and Onium Ion Chemistry*; Laali, K. K., Ed.; ACS Symposium Series 965; ACS: Washington, DC, 2007; pp 428–457.
- Frohn, H.-J.; Hirschberg, M.; Wenda, A.; Bardin, V. V. J. Fluorine Chem. 2008, 129, 459–473.
- 10. Frohn, H.-J.; Bailly, F.; Bardin, V. V. Mendeleev Commun. 2009, 19, 67-68.
- Frohn, H.-J.; Görg, S.; Henkel, G.; Läge, L. Z. Anorg. Allg. Chem. 1995, 621, 1251–1256.
- Abo-Amer, A.; Frohn, H.-J.; Steinberg, C.; Westphal, U. J. Fluorine Chem. 2006, 127, 1311–1323.
- 13. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- Bailly, F.; Barthen, P.; Breuer, W.; Frohn, H.-J.; Giesen, M.; Helber, J.; Henkel, G.; Priwitzer, A. Z. Anorg. Allg. Chem. 2000, 626, 1406–1413.
- Frohn, H.-J.; Franke, H.; Fritzen, P.; Bardin, V. V. J. Organomet. Chem. 2000, 598, 127–135.
- 16. Frohn, H. -J.; Abo-Amer, A. A. DE Patent 10232323A1, 2004.
- 17. Wall, L. A.; Donadio, R. E.; Pummer, W. J. J. Am. Chem. Soc. 1960, 82, 4846-4848.
- 18. Fild, M.; Glemser, O.; Christoph, G. Angew. Chem. 1964, 76, 953.
- Royo, P.; Uson, R. Rev. Acad. Cienc. Exactas, Fis-Quim. Natur. Zaragoza 1969, 24, 119–122.